等差数列异或和的小规律

背景

异或(xor,运算符号^):按位计算,同0异1,1 ^ 0 = 11 ^ 1 = 0 ,如此。

现定义等差数列 1, 2, ... , n异或和f(n) = 1 ^ 2 ^ ... ^ n ,求f(n)的值。

实现

我们很容易想到质朴的实现如下:

int func(int n) {
    int xor_sum = 0;
    for (int i = 1; i <= n; ++i) {
        xor_sum ^= i;
    }
    return xor_sum;
}

时间复杂度O(n),空间复杂度此处没有太大必要讨论。

通式

联想到等差数列的四则运算都是有求和公式的,那么异或运算有没有呢?直接这么看也看不出来,先输出个十来项看看规律:

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
// 1 3  0 4 1 7  0 8 1 11  0 12 1 15  0 16 1 19

注释中分别是从第1项到第18项的异或和。这个规律其实非常明显了,抛开前2个结果不看,后面4个为一组,定义为m组,通式如下:

// n=3, 0   n=7, 0      n=4m-1, 0
// n=4, 4   n=8, 8      n=4m, 4m
// n=5, 1   n=9, 1      n=4m+1, 1
// n=6, 7   n=10, 11    n=4m+2, 4m+3

从n>=3开始,后面的异或和的取值都是固定的常量或者公式求得。优化后实现如下:

int func(int n) {
    switch (n) {
        case 1: return 1;
        case 2: return 3;
        default:
            int r = n % 4;
            switch (r) {
                case 0: return r;
                case 1: return 1;
                case 2: return (n - 2) + 3;
                default: return 0;
            }
    }
}

时间复杂度O(1) ,部分代码为了体现公式没有精简,主要操作就是取余。

这样能提升不少性能。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页